본문으로 바로가기
본문으로 바로가기

DataStore 빠른 시작

몇 분 만에 DataStore를 사용할 수 있습니다. 이 가이드에서는 설치 방법, pandas에서의 마이그레이션, 기본 사용 패턴을 설명합니다.

설치

pip으로 chDB를 설치합니다:

pip install "chdb>=4.0"

선택적 의존성:

# For pandas DataFrame support
pip install "chdb[pandas]>=4.0"

# For PyArrow support
pip install "chdb[arrow]>=4.0"

# All optional dependencies
pip install "chdb[all]>=4.0"

설치 확인

import chdb
print(chdb.__version__)  # Should print 4.x.x or higher

from chdb import datastore as pd
print("DataStore ready!")

Pandas에서 한 줄로 마이그레이션하기

DataStore를 사용하기 시작하는 가장 간단한 방법은 import 구문만 변경하는 것입니다:

# Before (pandas)
import pandas as pd

# After (DataStore)
from chdb import datastore as pd

이제 완료되었습니다! 기존 pandas 코드는 앞으로 DataStore를 사용하며 SQL 최적화의 혜택을 누리게 됩니다.

마이그레이션 예제

# Original pandas code
import pandas as pd

df = pd.read_csv("employees.csv")
result = (df[df['salary'] > 50000]
          .groupby('department')['salary']
          .agg(['mean', 'count'])
          .sort_values('mean', ascending=False))
print(result)

# DataStore version - just change the import!
from chdb import datastore as pd

df = pd.read_csv("employees.csv")
result = (df[df['salary'] > 50000]
          .groupby('department')['salary']
          .agg(['mean', 'count'])
          .sort_values('mean', ascending=False))
print(result)  # Same result, faster execution!

기본 사용법

DataStore 생성

from chdb import datastore as pd

# From a dictionary
ds = pd.DataFrame({
    'name': ['Alice', 'Bob', 'Charlie'],
    'age': [25, 30, 35],
    'city': ['NYC', 'LA', 'NYC']
})

# From a pandas DataFrame
import pandas
pdf = pandas.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
ds = pd.DataFrame(pdf)

# From a CSV file
ds = pd.read_csv("data.csv")

# From a Parquet file (recommended for large datasets)
ds = pd.read_parquet("data.parquet")

데이터 필터링

from chdb import datastore as pd

ds = pd.read_csv("employees.csv")

# Single condition
senior = ds[ds['age'] > 30]

# Multiple conditions (AND)
senior_nyc = ds[(ds['age'] > 30) & (ds['city'] == 'NYC')]

# Multiple conditions (OR)
young_or_senior = ds[(ds['age'] < 25) | (ds['age'] > 50)]

# Using filter method (SQL-style)
result = ds.filter(ds['salary'] > 50000)

컬럼 선택

# Pandas style
subset = ds[['name', 'age']]

# SQL style
subset = ds.select('name', 'age')

정렬

# Pandas style
sorted_ds = ds.sort_values('salary', ascending=False)

# SQL style
sorted_ds = ds.sort('salary', ascending=False)

그룹화 및 집계

from chdb import datastore as pd

ds = pd.read_csv("sales.csv")

# Group by single column
by_region = ds.groupby('region')['amount'].sum()

# Group by multiple columns
by_region_product = ds.groupby(['region', 'product']).agg({
    'amount': ['sum', 'mean'],
    'quantity': 'sum'
})

# Multiple aggregations
summary = ds.groupby('category').agg({
    'price': ['min', 'max', 'mean'],
    'quantity': 'sum'
})

DataStore 조인

from chdb import datastore as pd

employees = pd.read_csv("employees.csv")
departments = pd.read_csv("departments.csv")

# Inner join
result = employees.join(departments, on='dept_id', how='inner')

# Left join
result = employees.join(departments, on='dept_id', how='left')

# Using merge (pandas style)
result = pd.merge(employees, departments, on='dept_id')

결과 가져오기

DataStore는 지연 평가(lazy evaluation) 방식을 사용하므로, 결과가 실제로 필요해질 때까지 연산이 실행되지 않습니다.

실행 시작하기

# Automatic triggers
print(ds)           # Displaying results
len(ds)             # Getting row count
ds.columns          # Accessing properties
list(ds)            # Converting to list

# Explicit conversion
df = ds.to_df()     # Convert to pandas DataFrame
df = ds.to_pandas() # Same as to_df()

생성된 SQL 보기

# See what SQL DataStore will execute
query = ds.filter(ds['age'] > 25).groupby('city').agg({'salary': 'mean'})
print(query.to_sql())

출력:

SELECT city, AVG(salary) AS mean
FROM file('data.csv', 'CSVWithNames')
WHERE age > 25
GROUP BY city

여러 데이터 소스 다루기

로컬 파일

from chdb import datastore as pd

# CSV
ds = pd.read_csv("data.csv")

# Parquet (best performance)
ds = pd.read_parquet("data.parquet")

# JSON
ds = pd.read_json("data.json")

Cloud 스토리지

from chdb.datastore import DataStore

# S3 (anonymous)
ds = DataStore.uri("s3://bucket/data.parquet?nosign=true")

# S3 (with credentials)
ds = DataStore.from_s3(
    "s3://bucket/data.parquet",
    access_key_id="KEY",
    secret_access_key="SECRET"
)

# HTTP/HTTPS
ds = DataStore.uri("https://example.com/data.csv")

데이터베이스

from chdb.datastore import DataStore

# MySQL
ds = DataStore.from_mysql(
    host="localhost",
    database="mydb",
    table="users",
    user="root",
    password="pass"
)

# PostgreSQL
ds = DataStore.from_postgresql(
    host="localhost",
    database="mydb",
    table="users",
    user="postgres",
    password="pass"
)

# Using URI
ds = DataStore.uri("mysql://user:pass@localhost:3306/mydb/users")

String 및 DateTime 연산

문자열 연산

# All pandas .str methods work
ds['name_upper'] = ds['name'].str.upper()
ds['name_len'] = ds['name'].str.len()
ds['has_a'] = ds['name'].str.contains('a')

DateTime 연산

# All pandas .dt methods work
ds['year'] = ds['date'].dt.year
ds['month'] = ds['date'].dt.month
ds['day_of_week'] = ds['date'].dt.dayofweek

ClickHouse 확장 기능

# URL parsing (not available in pandas!)
ds['domain'] = ds['url'].url.domain()

# JSON extraction
ds['user_name'] = ds['json_data'].json.get_string('name')

# IP address operations
ds['is_ipv4'] = ds['ip_addr'].ip.is_ipv4_string()

모범 사례

1. 대용량 파일에는 Parquet을 사용하십시오

# CSV - slower, reads entire file
ds = pd.read_csv("large_data.csv")

# Parquet - faster, columnar format, reads only needed columns
ds = pd.read_parquet("large_data.parquet")

2. 먼저 필터링하기

# Good - filter first, then aggregate
result = (ds
    .filter(ds['date'] >= '2024-01-01')
    .groupby('category')['amount'].sum()
)

# Less optimal - aggregate first
result = ds.groupby('category')['amount'].sum()

3. 필요한 컬럼만 선택합니다

# Good - select specific columns
result = ds.select('name', 'age', 'city').filter(ds['age'] > 25)

# Less optimal - work with all columns
result = ds.filter(ds['age'] > 25)

4. 복잡한 작업은 SQL로 수행

# For complex queries, use SQL directly
ds = DataStore()
result = ds.sql("""
    SELECT category, 
           SUM(amount) as total,
           COUNT(*) as count,
           AVG(amount) as avg
    FROM file('sales.csv', 'CSVWithNames')
    WHERE date >= '2024-01-01'
    GROUP BY category
    HAVING total > 10000
    ORDER BY total DESC
    LIMIT 10
""")

다음 단계