본문으로 바로가기
본문으로 바로가기

YouTube 싫어요 데이터셋

2021년 11월, YouTube는 모든 동영상에서 공개된 싫어요 개수를 제거했습니다. 크리에이터는 여전히 싫어요 수를 볼 수 있지만, 시청자는 동영상이 받은 좋아요 개수만 볼 수 있습니다.

참조

이 데이터셋은 45억 5천만 개가 넘는 레코드를 포함하고 있으므로, 아래 명령을 그대로 복사해 실행하기 전에 사용 중인 리소스가 이 정도 규모를 처리할 수 있는지 반드시 확인하십시오. 아래 명령은 ClickHouse Cloud프로덕션 인스턴스에서 실행되었습니다.

데이터는 JSON 형식이며 archive.org에서 다운로드할 수 있습니다. 동일한 데이터를 S3에도 제공하므로 ClickHouse Cloud 인스턴스로 더 효율적으로 다운로드할 수 있습니다.

다음은 ClickHouse Cloud에서 테이블을 생성하고 데이터를 삽입하는 단계입니다.

참고

아래 단계는 로컬에 설치된 ClickHouse에서도 문제없이 사용할 수 있습니다. 변경해야 할 사항은 s3cluster 대신 s3 함수를 사용하는 것뿐입니다(클러스터가 구성되어 있는 경우에는 default를 클러스터 이름으로 변경하면 됩니다).

단계별 지침

데이터 탐색

데이터가 어떤 형태인지 확인해 보겠습니다. s3cluster 테이블 함수는 테이블을 반환하므로 DESCRIBE를 사용하여 결과를 확인할 수 있습니다:

DESCRIBE s3(
    'https://clickhouse-public-datasets.s3.amazonaws.com/youtube/original/files/*.zst',
    'JSONLines'
);

ClickHouse는 JSON 파일로부터 다음 스키마를 추론합니다:

┌─name────────────────┬─type───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┬─default_type─┬─default_expression─┬─comment─┬─codec_expression─┬─ttl_expression─┐
│ id                  │ Nullable(String)                                                                                                                       │              │                    │         │                  │                │
│ fetch_date          │ Nullable(String)                                                                                                                       │              │                    │         │                  │                │
│ upload_date         │ Nullable(String)                                                                                                                       │              │                    │         │                  │                │
│ title               │ Nullable(String)                                                                                                                       │              │                    │         │                  │                │
│ uploader_id         │ Nullable(String)                                                                                                                       │              │                    │         │                  │                │
│ uploader            │ Nullable(String)                                                                                                                       │              │                    │         │                  │                │
│ uploader_sub_count  │ Nullable(Int64)                                                                                                                        │              │                    │         │                  │                │
│ is_age_limit        │ Nullable(Bool)                                                                                                                         │              │                    │         │                  │                │
│ view_count          │ Nullable(Int64)                                                                                                                        │              │                    │         │                  │                │
│ like_count          │ Nullable(Int64)                                                                                                                        │              │                    │         │                  │                │
│ dislike_count       │ Nullable(Int64)                                                                                                                        │              │                    │         │                  │                │
│ is_crawlable        │ Nullable(Bool)                                                                                                                         │              │                    │         │                  │                │
│ is_live_content     │ Nullable(Bool)                                                                                                                         │              │                    │         │                  │                │
│ has_subtitles       │ Nullable(Bool)                                                                                                                         │              │                    │         │                  │                │
│ is_ads_enabled      │ Nullable(Bool)                                                                                                                         │              │                    │         │                  │                │
│ is_comments_enabled │ Nullable(Bool)                                                                                                                         │              │                    │         │                  │                │
│ description         │ Nullable(String)                                                                                                                       │              │                    │         │                  │                │
│ rich_metadata       │ Array(Tuple(call Nullable(String), content Nullable(String), subtitle Nullable(String), title Nullable(String), url Nullable(String))) │              │                    │         │                  │                │
│ super_titles        │ Array(Tuple(text Nullable(String), url Nullable(String)))                                                                              │              │                    │         │                  │                │
│ uploader_badges     │ Nullable(String)                                                                                                                       │              │                    │         │                  │                │
│ video_badges        │ Nullable(String)                                                                                                                       │              │                    │         │                  │                │
└─────────────────────┴────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┴──────────────┴────────────────────┴─────────┴──────────────────┴────────────────┘

테이블 생성하기

추론된 스키마를 기반으로 데이터 타입을 정리하고 기본 키(primary key)를 추가했습니다. 다음 테이블을 정의하세요:

CREATE TABLE youtube
(
    `id` String,
    `fetch_date` DateTime,
    `upload_date_str` String,
    `upload_date` Date,
    `title` String,
    `uploader_id` String,
    `uploader` String,
    `uploader_sub_count` Int64,
    `is_age_limit` Bool,
    `view_count` Int64,
    `like_count` Int64,
    `dislike_count` Int64,
    `is_crawlable` Bool,
    `has_subtitles` Bool,
    `is_ads_enabled` Bool,
    `is_comments_enabled` Bool,
    `description` String,
    `rich_metadata` Array(Tuple(call String, content String, subtitle String, title String, url String)),
    `super_titles` Array(Tuple(text String, url String)),
    `uploader_badges` String,
    `video_badges` String
)
ENGINE = MergeTree
ORDER BY (uploader, upload_date)

데이터 삽입하기

다음 명령을 사용하여 S3 파일의 레코드를 youtube 테이블로 스트리밍합니다.

참조

이 작업은 대량의 데이터(46억 5천만 행)를 삽입합니다. 전체 데이터셋이 필요하지 않은 경우, 원하는 행 수와 함께 LIMIT 절을 추가하십시오.

INSERT INTO youtube
SETTINGS input_format_null_as_default = 1
SELECT
    id,
    parseDateTimeBestEffortUSOrZero(toString(fetch_date)) AS fetch_date,
    upload_date AS upload_date_str,
    toDate(parseDateTimeBestEffortUSOrZero(upload_date::String)) AS upload_date,
    ifNull(title, '') AS title,
    uploader_id,
    ifNull(uploader, '') AS uploader,
    uploader_sub_count,
    is_age_limit,
    view_count,
    like_count,
    dislike_count,
    is_crawlable,
    has_subtitles,
    is_ads_enabled,
    is_comments_enabled,
    ifNull(description, '') AS description,
    rich_metadata,
    super_titles,
    ifNull(uploader_badges, '') AS uploader_badges,
    ifNull(video_badges, '') AS video_badges
FROM s3(
    'https://clickhouse-public-datasets.s3.amazonaws.com/youtube/original/files/*.zst',
    'JSONLines'
)

INSERT 명령에 대한 참고 사항:

  • parseDateTimeBestEffortUSOrZero 함수는 입력된 날짜 필드가 올바른 형식이 아닐 수 있을 때 유용합니다. fetch_date가 올바르게 파싱되지 않으면 값이 0으로 설정됩니다
  • upload_date 컬럼에는 유효한 날짜가 들어 있지만, 동시에 "4 hours ago"와 같은 문자열도 포함되어 있습니다. 이는 분명히 유효한 날짜가 아닙니다. 원본 값을 upload_date_str에 저장하고 toDate(parseDateTimeBestEffortUSOrZero(upload_date::String))로 파싱을 시도하기로 결정했습니다. 파싱에 실패하면 단순히 0만 반환됩니다.
  • 테이블에 NULL 값이 들어오지 않도록 ifNull을 사용했습니다. 들어오는 값이 NULL인 경우 ifNull 함수가 해당 값을 빈 문자열로 설정합니다.

행 개수 세기

ClickHouse Cloud의 SQL Console에서 새 탭을 열거나(또는 새 clickhouse-client 창을 열고) 카운트가 증가하는 것을 확인하세요. 서버 리소스에 따라 45억 6천만 개의 행을 삽입하는 데 시간이 걸립니다. (설정을 조정하지 않을 경우 약 4.5시간 소요됩니다.)

SELECT formatReadableQuantity(count())
FROM youtube
┌─formatReadableQuantity(count())─┐
│ 4.56 billion                    │
└─────────────────────────────────┘

데이터 탐색하기

데이터가 삽입되면 좋아하는 동영상이나 채널의 싫어요 수를 집계하세요. ClickHouse가 업로드한 동영상이 몇 개인지 확인해 보겠습니다:

SELECT count()
FROM youtube
WHERE uploader = 'ClickHouse';
┌─count()─┐
│      84 │
└─────────┘

1 row in set. Elapsed: 0.570 sec. Processed 237.57 thousand rows, 5.77 MB (416.54 thousand rows/s., 10.12 MB/s.)
참고

위 쿼리가 매우 빠르게 실행되는 이유는 기본 키의 첫 번째 컬럼으로 uploader를 선택했기 때문입니다. 따라서 237,000개의 행만 처리하면 됩니다.

ClickHouse 비디오의 좋아요와 싫어요를 확인해 보겠습니다:

SELECT
    title,
    like_count,
    dislike_count
FROM youtube
WHERE uploader = 'ClickHouse'
ORDER BY dislike_count DESC;

응답은 다음과 같습니다:

┌─title────────────────────────────────────────────────────────────────────────────────────────────────┬─like_count─┬─dislike_count─┐
│ ClickHouse v21.11 Release Webinar                                                                    │         52 │             3 │
│ ClickHouse Introduction                                                                              │         97 │             3 │
│ Casa Modelo Algarve                                                                                  │        180 │             3 │
│ Профайлер запросов:  трудный путь                                                                    │         33 │             3 │
│ ClickHouse в Курсометре                                                                              │          4 │             2 │
│ 10 Good Reasons to Use ClickHouse                                                                    │         27 │             2 │
...

84 rows in set. Elapsed: 0.013 sec. Processed 155.65 thousand rows, 16.94 MB (11.96 million rows/s., 1.30 GB/s.)

다음은 title 또는 description 필드에 ClickHouse가 포함된 비디오 검색 예시입니다:

SELECT
    view_count,
    like_count,
    dislike_count,
    concat('https://youtu.be/', id) AS url,
    title
FROM youtube
WHERE (title ILIKE '%ClickHouse%') OR (description ILIKE '%ClickHouse%')
ORDER BY
    like_count DESC,
    view_count DESC;

이 쿼리는 모든 행을 처리해야 하며, 두 개의 문자열 컬럼을 파싱해야 합니다. 그럼에도 불구하고 초당 415만 행의 우수한 성능을 얻습니다:

1174 rows in set. Elapsed: 1099.368 sec. Processed 4.56 billion rows, 1.98 TB (4.15 million rows/s., 1.80 GB/s.)

결과는 다음과 같습니다:

┌─view_count─┬─like_count─┬─dislike_count─┬─url──────────────────────────┬─title──────────────────────────────────────────────────────────────────────────────────────────────────┐
│       1919 │         63 │             1 │ https://youtu.be/b9MeoOtAivQ │ ClickHouse v21.10 Release Webinar                                                                      │
│       8710 │         62 │             4 │ https://youtu.be/PeV1mC2z--M │ What is JDBC DriverManager? | JDBC                                                                     │
│       3534 │         62 │             1 │ https://youtu.be/8nWRhK9gw10 │ CLICKHOUSE - Arquitetura Modular                                                                       │

질문

동영상에서 댓글을 비활성화하면 실제로 좋아요나 싫어요를 누를 가능성이 낮아지나요?

댓글이 비활성화되어 있을 때, 사람들이 동영상에 대한 감정을 표현하기 위해 좋아요나 싫어요를 누를 가능성이 더 높아지나요?

SELECT
    concat('< ', formatReadableQuantity(view_range)) AS views,
    is_comments_enabled,
    total_clicks / num_views AS prob_like_dislike
FROM
(
    SELECT
        is_comments_enabled,
        power(10, CEILING(log10(view_count + 1))) AS view_range,
        sum(like_count + dislike_count) AS total_clicks,
        sum(view_count) AS num_views
    FROM youtube
    GROUP BY
        view_range,
        is_comments_enabled
) WHERE view_range > 1
ORDER BY
    is_comments_enabled ASC,
    num_views ASC;
┌─views─────────────┬─is_comments_enabled─┬────prob_like_dislike─┐
│ < 10.00           │ false               │  0.08224180712685371 │
│ < 100.00          │ false               │  0.06346337759167248 │
│ < 1.00 thousand   │ false               │  0.03201883652987105 │
│ < 10.00 thousand  │ false               │  0.01716073540410903 │
│ < 10.00 billion   │ false               │ 0.004555639481829971 │
│ < 100.00 thousand │ false               │  0.01293351460515323 │
│ < 1.00 billion    │ false               │ 0.004761811192464957 │
│ < 1.00 million    │ false               │ 0.010472604018980551 │
│ < 10.00 million   │ false               │  0.00788902538420125 │
│ < 100.00 million  │ false               │  0.00579152804250582 │
│ < 10.00           │ true                │  0.09819517478134059 │
│ < 100.00          │ true                │  0.07403784478585775 │
│ < 1.00 thousand   │ true                │  0.03846294910067627 │
│ < 10.00 billion   │ true                │ 0.005615217329358215 │
│ < 10.00 thousand  │ true                │  0.02505881391701455 │
│ < 1.00 billion    │ true                │ 0.007434998802482997 │
│ < 100.00 thousand │ true                │ 0.022694648130822004 │
│ < 100.00 million  │ true                │ 0.011761563746575625 │
│ < 1.00 million    │ true                │ 0.020776022304589435 │
│ < 10.00 million   │ true                │ 0.016917095718089584 │
└───────────────────┴─────────────────────┴──────────────────────┘

22 rows in set. Elapsed: 8.460 sec. Processed 4.56 billion rows, 77.48 GB (538.73 million rows/s., 9.16 GB/s.)

댓글을 활성화하는 것과 참여율 증가 사이에는 연관성이 있는 것으로 보입니다.

시간 경과에 따른 동영상 수 변화와 주요 이벤트는 무엇입니까?

SELECT
    toStartOfMonth(toDateTime(upload_date)) AS month,
    uniq(uploader_id) AS uploaders,
    count() AS num_videos,
    sum(view_count) AS view_count
FROM youtube
GROUP BY month
ORDER BY month ASC;
┌──────month─┬─uploaders─┬─num_videos─┬───view_count─┐
│ 2005-04-01 │         5 │          6 │    213597737 │
│ 2005-05-01 │         6 │          9 │      2944005 │
│ 2005-06-01 │       165 │        351 │     18624981 │
│ 2005-07-01 │       395 │       1168 │     94164872 │
│ 2005-08-01 │      1171 │       3128 │    124540774 │
│ 2005-09-01 │      2418 │       5206 │    475536249 │
│ 2005-10-01 │      6750 │      13747 │    737593613 │
│ 2005-11-01 │     13706 │      28078 │   1896116976 │
│ 2005-12-01 │     24756 │      49885 │   2478418930 │
│ 2006-01-01 │     49992 │     100447 │   4532656581 │
│ 2006-02-01 │     67882 │     138485 │   5677516317 │
│ 2006-03-01 │    103358 │     212237 │   8430301366 │
│ 2006-04-01 │    114615 │     234174 │   9980760440 │
│ 2006-05-01 │    152682 │     332076 │  14129117212 │
│ 2006-06-01 │    193962 │     429538 │  17014143263 │
│ 2006-07-01 │    234401 │     530311 │  18721143410 │
│ 2006-08-01 │    281280 │     614128 │  20473502342 │
│ 2006-09-01 │    312434 │     679906 │  23158422265 │
│ 2006-10-01 │    404873 │     897590 │  27357846117 │

코로나19 전후로 업로더 수가 눈에 띄게 급증한 것을 확인할 수 있습니다.

시간 경과에 따른 자막 증가와 그 시점

음성 인식 기술의 발전으로 동영상에 자막을 생성하는 일이 그 어느 때보다 쉬워졌습니다. YouTube가 2009년 말에 자동 자막 기능을 도입한 것이 그 도약의 시점이었을까요?

SELECT
    toStartOfMonth(upload_date) AS month,
    countIf(has_subtitles) / count() AS percent_subtitles,
    percent_subtitles - any(percent_subtitles) OVER (
        ORDER BY month ASC ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING
    ) AS previous
FROM youtube
GROUP BY month
ORDER BY month ASC;
┌──────month─┬───percent_subtitles─┬────────────────previous─┐
│ 2015-01-01 │  0.2652653881082824 │      0.2652653881082824 │
│ 2015-02-01 │  0.3147556050309162 │    0.049490216922633834 │
│ 2015-03-01 │ 0.32460464492371877 │    0.009849039892802558 │
│ 2015-04-01 │ 0.33471963051468445 │    0.010114985590965686 │
│ 2015-05-01 │  0.3168087575501062 │   -0.017910872964578273 │
│ 2015-06-01 │  0.3162609788438222 │  -0.0005477787062839745 │
│ 2015-07-01 │ 0.31828767677518033 │   0.0020266979313581235 │
│ 2015-08-01 │  0.3045551564286859 │   -0.013732520346494415 │
│ 2015-09-01 │   0.311221133995152 │    0.006665977566466086 │
│ 2015-10-01 │ 0.30574870926812175 │   -0.005472424727030245 │
│ 2015-11-01 │ 0.31125409712077234 │   0.0055053878526505895 │
│ 2015-12-01 │  0.3190967954651779 │    0.007842698344405541 │
│ 2016-01-01 │ 0.32636021432496176 │    0.007263418859783877 │

데이터 결과를 보면 2009년에 급증이 나타납니다. 당시 YouTube는 다른 사람의 동영상에 자막을 업로드할 수 있게 해 주던 커뮤니티 자막 기능을 제거하고 있었습니다. 이로 인해 청각장애인 및 난청 시청자를 위해 크리에이터들이 자신의 동영상에 자막을 추가하도록 독려하는 매우 큰 성공을 거둔 캠페인이 진행되었습니다.

시간에 따른 상위 업로더

WITH uploaders AS
    (
        SELECT uploader
        FROM youtube
        GROUP BY uploader
        ORDER BY sum(view_count) DESC
        LIMIT 10
    )
SELECT
    month,
    uploader,
    sum(view_count) AS total_views,
    avg(dislike_count / like_count) AS like_to_dislike_ratio
FROM youtube
WHERE uploader IN (uploaders)
GROUP BY
    toStartOfMonth(upload_date) AS month,
    uploader
ORDER BY
    month ASC,
    total_views DESC;
┌──────month─┬─uploader───────────────────┬─total_views─┬─like_to_dislike_ratio─┐
│ 1970-01-01 │ T-Series                   │    10957099 │  0.022784656361208206 │
│ 1970-01-01 │ Ryan's World               │           0 │  0.003035559410234172 │
│ 1970-01-01 │ SET India                  │           0 │                   nan │
│ 2006-09-01 │ Cocomelon - Nursery Rhymes │   256406497 │    0.7005566715978622 │
│ 2007-06-01 │ Cocomelon - Nursery Rhymes │    33641320 │    0.7088650914344298 │
│ 2008-02-01 │ WWE                        │    43733469 │   0.07198856488734842 │
│ 2008-03-01 │ WWE                        │    16514541 │    0.1230603715431997 │
│ 2008-04-01 │ WWE                        │     5907295 │    0.2089399470159618 │
│ 2008-05-01 │ WWE                        │     7779627 │   0.09101676560436774 │
│ 2008-06-01 │ WWE                        │     7018780 │    0.0974184753155297 │
│ 2008-07-01 │ WWE                        │     4686447 │    0.1263845422065158 │
│ 2008-08-01 │ WWE                        │     4514312 │   0.08384574274791441 │
│ 2008-09-01 │ WWE                        │     3717092 │   0.07872802579349912 │

조회수가 증가함에 따라 좋아요 비율은 어떻게 변합니까?

SELECT
    concat('< ', formatReadableQuantity(view_range)) AS view_range,
    is_comments_enabled,
    round(like_ratio, 2) AS like_ratio
FROM
(
SELECT
    power(10, CEILING(log10(view_count + 1))) AS view_range,
    is_comments_enabled,
    avg(like_count / dislike_count) AS like_ratio
FROM youtube WHERE dislike_count > 0
GROUP BY
    view_range,
    is_comments_enabled HAVING view_range > 1
ORDER BY
    view_range ASC,
    is_comments_enabled ASC
);
┌─view_range────────┬─is_comments_enabled─┬─like_ratio─┐
│ < 10.00           │ false               │       0.66 │
│ < 10.00           │ true                │       0.66 │
│ < 100.00          │ false               │          3 │
│ < 100.00          │ true                │       3.95 │
│ < 1.00 thousand   │ false               │       8.45 │
│ < 1.00 thousand   │ true                │      13.07 │
│ < 10.00 thousand  │ false               │      18.57 │
│ < 10.00 thousand  │ true                │      30.92 │
│ < 100.00 thousand │ false               │      23.55 │
│ < 100.00 thousand │ true                │      42.13 │
│ < 1.00 million    │ false               │      19.23 │
│ < 1.00 million    │ true                │      37.86 │
│ < 10.00 million   │ false               │      12.13 │
│ < 10.00 million   │ true                │      30.72 │
│ < 100.00 million  │ false               │       6.67 │
│ < 100.00 million  │ true                │      23.32 │
│ < 1.00 billion    │ false               │       3.08 │
│ < 1.00 billion    │ true                │      20.69 │
│ < 10.00 billion   │ false               │       1.77 │
│ < 10.00 billion   │ true                │       19.5 │
└───────────────────┴─────────────────────┴────────────┘

뷰(View)는 어떻게 분산됩니까?

SELECT
    labels AS percentile,
    round(quantiles) AS views
FROM
(
    SELECT
        quantiles(0.999, 0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1)(view_count) AS quantiles,
        ['99.9th', '99th', '95th', '90th', '80th', '70th','60th', '50th', '40th', '30th', '20th', '10th'] AS labels
    FROM youtube
)
ARRAY JOIN
    quantiles,
    labels;
┌─percentile─┬───views─┐
│ 99.9th     │ 1216624 │
│ 99th       │  143519 │
│ 95th       │   13542 │
│ 90th       │    4054 │
│ 80th       │     950 │
│ 70th       │     363 │
│ 60th       │     177 │
│ 50th       │      97 │
│ 40th       │      57 │
│ 30th       │      32 │
│ 20th       │      16 │
│ 10th       │       6 │
└────────────┴─────────┘